Exponential basis functions in solution of incompressible fluid problems with moving free surfaces

نویسندگان

  • S. M. Zandi
  • B. Boroomand
  • Soheil Soghrati
چکیده

In this report, a new simple meshless method is presented for the solution of incompressible inviscid fluid flow problems with moving boundaries. A Lagrangian formulation established on pressure, as a potential equation, is employed. In this method, the approximate solution is expressed by a linear combination of exponential basis functions (EBFs), with complex-valued exponents, satisfying the governing equation. Constant coefficients of the solution series are evaluated through point collocation on the domain boundaries via a complex discrete transformation technique. The numerical solution is performed in a time marching approach using an implicit algorithm. In each time step, the governing equation is solved at the beginning and the end of the step, with the aid of an intermediate geometry. The use of EBFs helps to find boundary velocities with high accuracy leading to a precise geometry updating. The developed Lagrangian meshless algorithm is applied to variety of linear and nonlinear benchmark problems. Non-linear sloshing fluids in rigid rectangular two-dimensional basins are particularly addressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

گسترش روش بدون شبکه توابع پایه نمایی برای حل مسائل تکین ورق

: Existence of singular points inside the solution domain or on its boundary deteriorates the accuracy and convergence rate of numerical methods. This phenomenon usually happens due to discontinuities in the boundary conditions or abrupt changes in the domain shape. This study has focused on the solution of singular plate problems using the exponential basis functions method. In this method, un...

متن کامل

Aixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity

The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...

متن کامل

شبیه‌سازی عددی امواج هارمونیک تولید شده توسط موج‌ساز پیستونی در کانال موج به‌‌روش بدون شبکه توابع پایه نمایی با استفاده از الگوریتم اویلری- لاگرانژی مخلوط

In this article, a meshless method based on exponential basis functions (EBFs) is presented to simulate the harmonic waves with moving free-surfaces generated by the piston-type wave maker. Accordingly, velocity potential is adopted in a Mixed Eulerian-Lagrangian (MEL) approach. Boundary conditions are met through a point-wise collocation approach. In order to update the geometry in the simulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012